RICE CREEK WATERSHED STREAM HEALTH EVALUATION PROGRAM

2023-2024 STREAM MONITORING REPORT

Jan 9, 2024

Sam Armacost Natalie Warren

Friends of the Mississippi River 106 W Water Street Suite 600 Saint Paul, Minnesota 55107 www.fmr.org

Acknowledgements

The 2023 Rice Creek Watershed Stream Health Evaluation Program (SHEP) wishes to recognize the following individuals and organizations for their dedication to the success of this program.

<u>Local Government</u> The Rice Creek Watershed District

Organizations Bolton & Menk, Inc.

Special Recognition

The Rice Creek Watershed Stream Health Evaluation Program wishes to thank the following partners, without whom this program would not be possible:

Katie Farber – Bolton & Menk, Inc. Wayne LeBlanc – SHEP Team Leader Bob Bartlett – SHEP Team Leader Katherine & Darrell Majkrzak – SHEP Team Co-Leaders

2023 Rice Creek SHEP Volunteers

The 2023 Rice Creek Watershed Stream Health Evaluation Program extends our most sincere appreciation to all of the SHEP volunteers who donated their time in the stream last summer. Each of these volunteers contributed between 15 and 30 hours of volunteer service in monitoring the health of our water resources. Thank you!

<u>Team 1:</u> Wayne LeBlanc*, Gary Averbeck, Marty Asleson, Laura Lyle, Tere O'Connell, John Sullivan, Kim Sullivan, Barbara Bor, Linda Grundtner

<u>Team 2</u>: Bob Bartlett*, Ralph Butkowski, Gary Ellis, Jo Ann Morse, Joe Yoch, Joy Gerdes, Adam Wegren, Davlat Baydullo, Mike Vant

<u>Team 3</u>: Katherine Majkrzak*, Darrell Majkrzak*, Rachel Beise, Elan Majkrzak, Jennifer Olson, Sarah Podzorski, Susan Young, Abby Peters, Alena Stewart

* SHEP Team Leader

For more information on the Rice Creek Watershed Stream Health Evaluation Program or for a copy of this report, please contact Friends of the Mississippi River or visit www.fmr.org

Rice Creek Watershed Stream Health Evaluation Program 2023 Field Monitoring Report

1.0	BACKGROUND	4
2.0	RICE CREEK WATERSHED SHEP	5
2.1	Northern Sites: Hardwood Creek and Clearwater Creek	7
2.2	Middle Sites: Rice Creek	9
2.3	Southern Sites: Locke Lake	10
3.0	SHEP OPERATIONS	12
3.1	Volunteer Recruitment	12
3.2	Team Assignments	12
3.3	Training	13
3.4	Field Sampling	13
3.5	Lab Identification	14
3.6	Quality Assurance/Quality Control (QA/QC)	14
4.0	MACROINVERTEBRATE RESULTS	15
4.1	Hardwood Creek Above	16
4.2	Hardwood Creek Below	20
4.3	Clearwater Creek	24
4.4	Rice Creek Above	28
4.5	Rice Creek Below	32
4.6	Rice Creek Irondale	36
4.7	Locke Lake Above	39
4.8	Locke Lake Below	43
4.9	Locke Lake Park	47
5.0	SUMMARY OF RESULTS	50
5.1	Improving	50
5.2	Stable	50
5.3	Worsening	50
5.4	Status in 2023	51

1.0 BACKGROUND

In an effort to obtain a more comprehensive understanding of the health of our water resources, the Minnesota Pollution Control Agency (MPCA) and other agencies have developed protocols and indices for the biological assessment of streams. Because aquatic organisms express a range of tolerances to environmental conditions, biological assessment can be a powerful quantitative tool in understanding the health of water resource and provides a more complete picture of the ecological health of our waters. The National River Watch Network states that five years of data should be collected in order to perform a biological characterization of a sample site.

In the early 1990's, Riverwatch, a national volunteer river monitoring program, was brought to Minnesota to engage schools in river monitoring. The program was started by the Mississippi Headwaters Board and taken over by Hennepin County and eventually spread across the Twin Cities metropolitan area.

In 1997, a citizen wetland monitoring program was formed by local partners and the MPCA to evaluate wetland health. Sampling methods and evaluation metrics were developed by MPCA scientists to measure the health of the local wetlands. This Wetland Health Evaluation Program (WHEP) is now an award-winning and nationally recognized program that uses citizen volunteers to monitor the biological health of local wetlands. Multiple layers of quality control, volunteer training and the use of rigorous protocols assure scientifically-valid monitoring results. Volunteers enjoy the program and, after participating, often become more engaged in wetland and watershed issues and stewardship within their communities.

The Stream Health Evaluation Program (SHEP) is a model for volunteer stream monitoring modeled after WHEP and Riverwatch. SHEP uses trained adult volunteers to evaluate the biological health of streams using advanced bioassessment protocols and indices specifically developed for this region. The program thoroughly monitors volunteer data collection and lab identification techniques to ensure compatibility with established protocols. Complete data cross-checks and programmatic evaluation ensure accurate and timely data that are quality certified.

SHEP provides local communities and watershed organizations with a premier volunteer benthic macroinvertebrate monitoring program that produces reliable data and actively engages citizens in the work of the watershed.

SHEP

- Monitors the health of valuable water resources,
- Uses research-based multiple index metrics,
- Professionally trains adult volunteers,
- Utilizes multiple levels of quality control to ensure quality results,
- Provides relevant, reliable data to local decision makers,
- Engages citizens in water resource management and assessment,

- Promotes water resource health to community members, and
- Promotes partnership between local governments, state agencies and community residents.

2.0 RICE CREEK WATERSHED SHEP

Watershed districts are special purpose units of local government whose boundaries follow those of a natural watershed. The Rice Creek Watershed District (RCWD) was established in 1972 to conserve and restore the water resources of the district for the beneficial use of current and future generations. It is a governmental organization managed by a Board of Managers appointed by the county commissions of Anoka, Ramsey and Washington Counties. About 10 percent of the watershed's surface area is occupied by lakes, the largest of which are White Bear Lake and Bald Eagle Lake. About 13 percent of the watershed consists of wetland areas.

RCWD provides most of the funds for SHEP, which is coordinated primarily by Friends of the Mississippi River (FMR) in partnership with Fortin Consulting, now Bolton & Menk, and the MPCA. Local program partners included the University of Minnesota Water Resource Center, Anoka County Parks and local landowners. Matching resources for SHEP are provided by FMR.

In 2006, RCWD staff selected SHEP monitoring sites, which were chosen to gauge the effects of recent watershed restoration and stewardship activities by being upstream or downstream of such activities. SHEP was first implemented in a pilot phase in the summer and fall of 2006 with Rice Creek Above and Below and Locke Lake Above and Below (Figure 1).

Rice Creek Above and Below sites (both of which are within the boundaries of the restoration) were selected at the beginning and end of the restoration in part to gauge the long-term stream health changes that result from this restoration activity. A third site, Rice Creek Irondale, was introduced to the program in 2012 further downstream of the restoration area, before the Rice Creek discharges into Long Lake.

Locke Lake Above and Below sites are just upstream of Rice Creek's outflow to the Mississippi River. RCWD restoration activities involved installing shoreland restoration and shoreland stabilization measures on properties adjacent to Locke Lake.

In summer 2006, as part of a grant from the Legislative Commission on Minnesota Resources, restoration was performed at three locations along Hardwood Creek that had been identified as having severe bank erosion. Banks were stabilized and in-stream habitat improvement techniques were implemented.

In 2007, Hardwood Creek Above and Clearwater Creek were added. In 2010, Hardwood Creek Below was added, and Locke Lake Park was added in 2012.

Currently, SHEP sites include

- Northern three sites: Hardwood Creek Above, Hardwood Creek Below and Clearwater Creek
- Middle three sites: Rice Creek Above, Rice Creek Below and Rice Creek Irondale, and
- Southern three sites: Locke Lake Park, Locke Lake Above and Locke Lake Below.

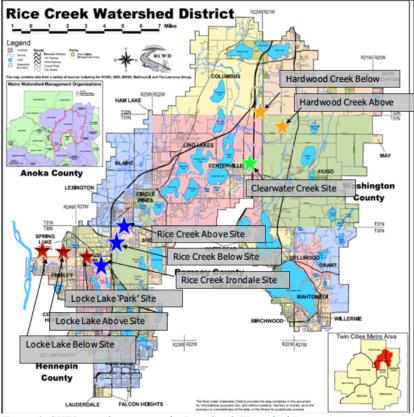


Figure 1: SHEP sampling sites in the Rice Creek Watershed District

The RWCD provides a variety of useful information on their Water Quality Reports and Plans page¹ that provides a picture of stream health and planning in the district. Total

¹Rice Creek Watershed District Water Quality Reports and Plans, <u>https://www.ricecreek.org/index.asp?SEC=59FA6C4B-0497-43A0-8FD3-B9D2EC83A2E3&Type=B_BA</u> <u>SIC.</u> Accessed 17 Mar 2023. Maximum Daily Load (TMDL) documents are listed and referenced as well as a carp management program, lake management action plan, the 2010 State of the Lakes Report and the 2009 Stream Monitoring Report.

The Stream Monitoring Report² documents dissolved oxygen data, transparency, total suspended solids, phosphorus loads and chloride levels for Rice Creek, Hardwood Creek and Clearwater Creek in 2009. Data suggested that, while some impairments existed in the streams, most of the time, water quality standards were not violated, and chloride levels were not problematic.

2.1 Northern Sites: Hardwood Creek and Clearwater Creek

In 2002, Hardwood Creek was included on Minnesota's list of impaired waters because the amount, condition and diversity of aquatic life such as fish were too low. Furthermore, there was not enough oxygen in the water to support fish and aquatic insects. A TMDL collaborative study between the MPCA and RCWD began in 2004 to address the impairments on Hardwood Creek. The TMDL was approved by the MPCA in 2009.³ In 2014, Hardwood Creek was listed as impaired for aquatic life.⁴

Midpoint sampling locations of Hardwood Creek Above and Below can be seen in Figures 2 and 3, respectively. SHEP sampling began in 2007 for Hardwood Creek Above and in 2010 at Hardwood Creek Below.

https://www.ricecreek.org/vertical/Sites/%7BF68A5205-A996-4208-96B5-2C7263C03AA9%7D/uploads/2009 Stream Monitoring.pdf Accessed 11 Mar 2021.

³ Hardwood Creek – Impaired Biota (fish) and Low Dissolved Oxygen: TMDL Project, <u>https://www.pca.state.mn.us/water/tmdl/hardwood-creek-impaired-biota-fish-and-low-dissolved-oxygen-tmdl-project</u>. Accessed 11 Mar 2021.

⁴ Rice Creek Watershed District Impaired Waters Inventory Map <u>https://www.ricecreek.org/vertical/Sites/%7BF68A5205-A996-4208-96B5-</u> <u>2C7263C03AA9%7D/uploads/RCWD_Impaired_Waters_Inventory_Map_2014%281%29.pdf</u>. Accessed 7 Mar 2021.

² 2009 Stream Monitoring Report,

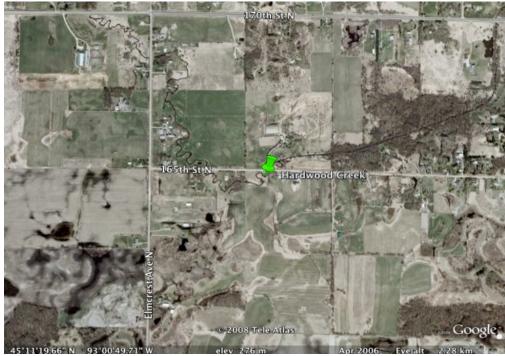


Figure 2: Hardwood Creek Above midpoint sampling location

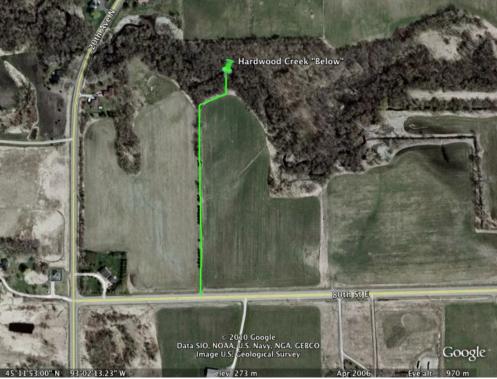


Figure 3: Hardwood Creek Below midpoint sampling location

In 2014, Clearwater Creek was also listed as impaired for aquatic life. SHEP sampling began in 2007. The midpoint sampling location of Clearwater Creek can be seen in Figure 4.

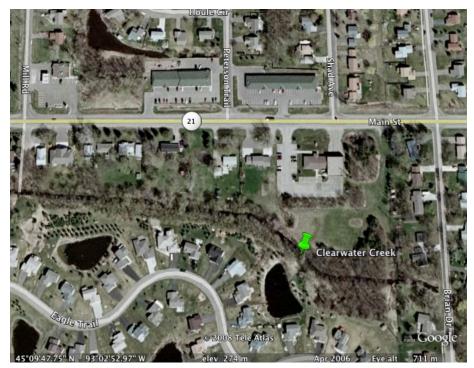


Figure 4: Clearwater Creek midpoint sampling location

2.2 Middle Sites: Rice Creek

In 2014, Rice Creek was listed as impaired for aquatic life. In 2015, RCWD and Emmons and Olivier Resources Inc. completed a re-meander and restoration of a significant reach of Rice Creek.⁵ The project was entirely within Rice Creek North Regional Park and includes a stretch of Rice Creek located between County Road J, Lexington Avenue and County Road I. The goal of the project was to restore the historical winding flow path and surrounding wetland hydrology for this reach of stream, which was originally straightened in the early 1900's. Many benefits of this project, such as habitat enhancement, water quality improvement and enriched recreation opportunities, have begun to be realized. While two of the SHEP sampling sites are titled Above and Below for descriptive purposes, both sites are within the boundaries of the restoration.

SHEP sampling began in 2006 for Rice Creek Above and Below and in 2012 for Rice Creek Irondale. Midpoints of the sampling locations for Rice Creek Above and Below can be seen in Figure 5, and the midpoint sampling location for Rice Creek Irondale is shown in Figure 6.

⁵ McCormick, Tori J. "Project to restore Rice Creek's meandering path already shows positives for water, wildlife." Special to the Star Tribune, Sept 5, 2019. https://www.startribune.com/project-to-restore-rice-creek-s-meandering-path-already-shows-positives-for-water-wildlife/559485082/ Accessed 7 Mar 2021.

Figure 5: Rice Creek Above and Below midpoint sampling locations

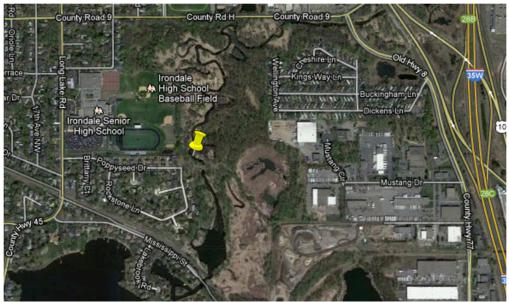


Figure 6: Rice Creek Irondale midpoint sampling location

2.3 Southern Sites: Locke Lake

In 2014, Rice Creek near Locke Lake was listed as impaired for aquatic recreation and aquatic life. Restoration activities by the Rice Creek Watershed District has focused on installing shoreland restoration and shoreland stabilization measures on properties adjacent to Locke Lake.

SHEP sampling began at in 2006 at Locke Lake Above and Below and in 2012 at Locke Lake Park. Midpoints of the sampling locations for Locke Lake Above and Below can be seen in Figure 7, and the midpoint sampling location for Locke Lake Park is shown in Figure 8.

Figure 7: Locke Lake Above and Below midpoint sampling locations

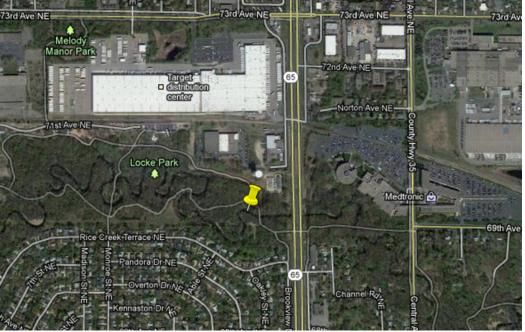


Figure 8: Locke Lake Park midpoint sampling location

3.0 SHEP OPERATIONS

3.1 Volunteer Recruitment

FMR recruits volunteers who preferably live in the Rice Creek watershed to fill spots as SHEP volunteers when needed. In 2023, FMR recruited five new volunteers, including one new Rice Creek watershed resident and four from the Metro area; all other participants were returning volunteers..

Twenty-seven volunteers participated in SHEP in 2023. Volunteers were divided into three teams to monitor the nine sites. Each team was led by team leaders, who are an integral part of SHEP and were selected by project staff. Team leaders received a small stipend (unless they had matching funds requirement associated with their volunteer time) and were responsible for managing monitoring activities and communication within their team.

3.2 Team Assignments

Team leaders, team members and monitoring location assignments are listed below.

Team 1

Monitoring Locations: Hardwood Creek and Clearwater Creek Site Names: Hardwood Creek Above, Hardwood Creek Below, Clearwater Creek Team Leaders: Wayne LeBlanc Team Members: Gary Averbeck, Marty Asleson, Laura Lyle, Tere O'Connell, John Sullivan, Kim Sullivan, Barbara Bor, Linda Grundtner

Team 2

Monitoring Location: Rice Creek Area Site Names: Rice Creek Above, Rice Creek Below, Rice Creek Irondale Team Leaders: Bob Bartlett Team Members: Ralph Butkowski, Gary Ellis, Jo Ann Morse, Joe Yoch, Joy Gerdes, Adam Wegren, Davlat Baydullo, Mike Vant

Team 3

Monitoring Location: Locke Lake Area Site Names: Locke Lake Above, Locke Lake Below, Rice Creek Park Team Leaders: Katherine and Darrell Majkrzak Team Members: Rachel Beise, Elan Majkrzak, Jennifer Olson, Sarah Podzorski, Susan Young, Alena Stewart, Abby Peters

3.3 Training

Advanced volunteer training is essential to the success of SHEP. In 2023, volunteers and FMR and Bolton & Menk staff met in person to review sampling methodology and give new volunteers time in a stream to practice using the equipment.

Volunteers participated in two training sessions: a field training in August and a lab training in September of 2023, covering safety while sampling in the field, macroinvertebrate sampling protocols set by the MPCA⁶, and proper laboratory equipment usage.

Katie Farber from Bolton & Menk reviewed the SHEP monitoring protocol, which includes a biological assessment (collection of benthic macroinvertebrates) and a physical habitat assessment. Katie noted where to sample for macroinvertebrates, the target number of jabs and the best method of transferring samples to plastic jars. The habitat assessment review included how to measure stream flow, stream depth and stream width as well as noting water odor, temperature and appearance. Volunteers were also reminded to note general weather information from that day and from the recent past as well as when not to sample (high rainfall previous day).

After the training, sampling equipment was distributed to each team leader.

3.4 Field Sampling

SHEP volunteer teams monitored their sites in late August to late-September 2023 using the MPCA's multi-habitat monitoring protocol. This approach samples major habitats in proportional representation within each sampling reach. Benthic macroinvertebrates were collected systematically from all available in-stream habitats by jabbing with a D-frame dip net. At least 20 samples or jabs were taken from across all major habitat types (snags and woody debris, vegetated banks, cobble and sand/fine sediment bottom areas) in the reach.

The physical habitat was assessed by measuring stream width, stream depth across three transects, water velocity, water temperature and appearance.

⁶ Macroinvertebrate Data Collection Protocols for Lotic Waters in Minnesota, <u>https://www.pca.state.mn.us/sites/default/files/wq-bsm3-12a.pdf</u>. Accessed 11 Mar 2021.

3.5 Lab Identification

In the fall of 2023, volunteers sorted and identifyed macroinvertebrates. Each team coordinated the sharing of FMR's microscopes, and reserved community spaces at local buildings. The volunteers identified the taxonomic classification of benthic macroinvertebrate samples from each sampling site down to family.

Each macroinvertebrate family is assigned a pollution tolerance number between zero and 10 depending on its sensitivity to pollution. A score of zero indicates very sensitive to organic pollution. A 10 indicates very tolerant of organic pollution.

Once macroinvertebrates were identified, site reaches were scored according to the family level biotic index (FBI). FBI is the weighted average of the biotic indices for all the invertebrates in the sample. Pollution intolerant families such as stoneflies (FBI of 0 - 2) can only survive in excellent water quality (Table 1). Pollution tolerant organisms such as leeches and aquatic earthworms can live in clean water or poor-quality water. They have high FBI values (8 - 10).

FBI	Stream Health	Degree of Organic Pollution	
0.00-3.75	Excellent	Organic pollution unlikely	
3.76-4.25	Very good	Possible slight organic pollution	
4.26-5.00	Good	Some organic pollution probable	
5.01-5.75	Fair	Fairly substantial pollution likely	
5.76-6.50	Fairly poor	Substantial pollution likely	
6.51-7.25 Poor		Very substantial pollution likely	
7.26-10.0 Very poor		Severe organic pollution likely	

Table 1: Water quality evaluation using FBI scores⁷

FBI summarizes the various pollution tolerance values of all families in a sample. The score for a particular monitoring site corresponds to a likely degree of organic pollution present at that location (Table 1). As such, the FBI score is a useful tool for evaluating the general status of organic pollution in streams within a watershed.

3.6 Quality Assurance/Quality Control (QA/QC)

When volunteers identify macroinvertebrates, Katie Farber conducts QA/QC on 33% of the identified macroinvertebrates. In recent years, she has reported close to 100% accuracy rates. Because of its history of recruiting and retaining dedicated volunteers, SHEP has become a reliable source of high-quality data.

⁷ Hilsenhoff, William L. "Rapid Field Assessment of Organic Pollution with a Family-Level Biotic Index." *Journal of the North American Benthological Society*, vol. 7, no. 1, 1988, pp. 65–68. *JSTOR*, <u>www.jstor.org/stable/1467832</u>. Accessed 7 Mar 2

4.0 MACROINVERTEBRATE RESULTS

First, sample size is looked at because a large sample offers more confidence for a more reliable data set. SHEP protocol requires a minimum of 100 individual invertebrates to be picked and identified per sample.

Second, the number of different macroinvertebrate families found at the site (also known as family richness) is a measure of diversity. In general, more diversity is better. Therefore, a larger number of families may reflect a healthier community than a smaller number.

The dominant family is a record of what macroinvertebrate was most abundant. Its percentage of the total invertebrate sample indicates how dominant a single family is at a site. A high percent dominance is suboptimal; it indicates a less diverse community of macroinvertebrates.

Volunteers also recorded the number of mayfly (Ephemeroptera), stonefly (Plecoptera) and caddisfly (Trichoptera) families in the sample. These families (referred to as EPT families) represent the pollution intolerant insects. A higher EPT score reflects better water quality than a lower one.

As mentioned before, the FBI score is a useful tool for evaluating the general status of organic pollution in streams within a watershed.

4.1 Hardwood Creek Above – usually monitored by Team #1; no water as of September 2023

Number of individuals:

• 0 invertebrates were identified.

Dominant Family:

• N/A

Percent Dominance:

It is assumed that families are more evenly distributed among the sample if the dominant family makes up a lower percentage of the sample.

Year	Year Dominant Family % Do		Dominant Family (2 nd)	% Dominance
2023	N/A	0	N/A	0
2022	Culicidae	37	Belostomatidae	13
2021	Gammaridae	34	Chironomidae	14
2020	Gammaridae	29	Heptageniidae	21
2019	Simuliidae	29	Baetidae	26
2018	Simuliidae	42	Baetidae	26
2017	Baetidae	33	Simuliidae	30
2016	Baetidae	56	Simuliidae	15
2015	Baetidae	40	Simuliidae	35
2014	Simuliidae	35	Baetidae	24
2013	Hyalellidae	35	Heptageniidae	27
2012	Heptageniidae	40	Chironomidae	19
2011	Gammaridae	44	Simuliidae	19
2010	Gammaridae	30	Chironomidae	28
2009	Chironomidae	38	38 NA	
2008	Decapoda	25	NA	NA
2007	Hyalellidae	40	NA	NA

Table 2: Hardwood Creek Above data

Number of Families (identified in a sample):

The higher the diversity the better.

Year	# Families	Year	# Families
2023	0	2014	13
2022	20	2013	12
2021	16	2012	18
2020	8	2011	13
2019	15	2010	18
2018	12	2009	18
2017	17	2008	19
2016	13	2007	22
2015	12		

Table 3: Hardwood Creek Above families

Number of EPT Families (pollution sensitive):

EPT (*Ephemeroptera-Plecoptera-Tricoptera or Mayfly-Stonefly-Caddisfly*) are three Orders of invertebrates with low tolerance to pollution. The more of these families in a sample, the better. More than 10-12 families is good.

Year	# EPT Families	% make-up of EPT Families	EPT Families
2023	0	0	N/A
2022	1	1	Phryganeidae
2021	3	22	Baetidae, Heptageniidae, Hydropsychidae
2020	3	50	Baetidae, Heptageniidae, Hydropsychidae
2019	4	50	Baetidae, Caenidae, Heptageniidae, Hydropsychidae,
2018	3	45	Baetidae, Heptageniidae, Hydropsychidae
2017	3	38	Baetidae, Heptageniidae, Hydropsychidae
2016	5	70	Baetidae, Caenidae, Heptageniidae, Hydropsychidae, Phryganeidae
2015	4	46	Baetidae, Caenidae, Heptageniidae, Hydropsychidae
2014	4	51	Baetidae, Caenidae, Heptageniidae, Hydropsychidae
2013	3	31	Baetidae, Heptageniidae, Siphlonuridae
2012	5	55	Baetidae, Caenidae, Heptageniidae, Hydropsychidae, Hydrophilidae
2011	3	9	Baetidae, Heptageniidae, Hydropsychidae
2010	3	17	Baetidae, Heptageniidae, Hydropsychidae
2009	4	NA	NA
2008	5	NA	NA
2007	3	NA	NA

Table 4: Hardwood Creek Above EPT families

Family Biotic Index (FBI):

This program identifies macroinvertebrates to the family level. Each family is assigned a tolerance value rating from 0-10. The lower the number, the more sensitive to pollution. The FBI score is the average pollution tolerance of all of the macroinvertebrates identified in a sample.

Year	FBI Score	Score Description
2023	0	N/A
2022	7.1	Poor – very substantial organic pollution likely
2021	4.8	Good – Some organic pollution probable
2020	4.3	Good – Some organic pollution probable
2019	5.2	Fair – Fairly substantial pollution likely
2018	5.0	Good – Some organic pollution probable
2017	4.9	Good – Some organic pollution probable
2016	4.8	Good – Some organic pollution probable
2015	5.2	Fair – Fairly substantial pollution likely
2014	5.2	Fair – Fairly substantial pollution likely
2013	6.2	Fairly Poor – substantial pollution likely
2012	5.0	Good – Some organic pollution probable
2011	5.0	Good – Some organic pollution probable
2010	6.0	Fairly Poor – substantial pollution likely
2009	6.6	Poor – very substantial pollution likely
2008	6.3	Fairly Poor – substantial pollution likely
2007	7.3	Very Poor – severe organic pollution likely

Table 5: Hardwood Creek Above FBI score

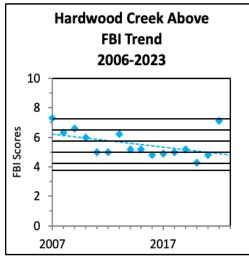


Figure 9. A stream health trend was created using scores calculated for family biotic index (FBI). Contrary to common sense, a descending trendline indicates improvement in the stream health since organisms with sensitivity to water pollution score lower on the family biotic index.

Summary:

Hardwood Creek Above has been sampled for 16 consecutive years since 2007, with the first interruption in 2023 when volunteers found no water flowing in the stream. There can be no conclusive FBI score determined this year because no samples were collected.

Based on last year's data, it appears that this stream was moving toward "Poor" health, which was a decline compared to its typical rating of "Fair" to "Good". For most years, the FBI score,

the dominating families, the family diversity, and the EPT family representatives have been consistent. In 2022, water levels were low. The SHEP team noted that the creek was extremely low, almost with no flow, just a trickle of water with a few pools. This provided an environment for mosquitoes to thrive which have a high tolerance for pollution. As usual, other families present are represented in smaller proportions.

Family List – Hardwood Creek Above							
Family Name	Tolerance Value	# Individuals 2023	# Individuals 2022	# Individuals 2021	# Individuals 2020		
Asellidae (crustacean)	8	0		2			
Baetidae (mayfly)	4	0		10	29		
Belostomatidae (true bug)	10	0	15				
Caenidae (mayfly)	7	0					
Calopterygidae (damselfly)	5	0		1			
Ceratopogonidae (truefly)	6	0	1				
Chironomidae (truefly)	6	0	1	17	10		
Chrysomelidae (beetle)	6	0	2				
Coengrionidae (damselfly)	9	0	1				
Collembola (springtail)	8	0	3				
Corixidae (true bug)	9	0	3	1			
Culicidae (truefly)	8	0	43	3			
Cuculioniae (beetle)	6	0	4				
Decapoda (crustacean)	6	0	1	7			
Elmidae (beetle)	4	0	10	12			
Gammaridae (crustacean)	4	0	10	40	47		
Gastropoda (snail)	7	0	8	3			
Gerridae (true bug)	na	0			1		
Haliplidae (beetle)	7	0	1				
Heptageniidae (mayfly)	4	0		15	33		
Hirundinea (leech)	10	0					
Hydophilidae (beetle)	5	0	3				
Hydropsychidae (caddisfly)	4	0		1	19		
Notonectidae	na	0	5		2		
Pelecypoda (clam)	7	0		3			
Phyrganeidae	4	0	1				
Sialidae (alderfly)	4	0		1			
Simuliidae (truefly)	6	0	1		20		
Tabanidae (truefly)	6	0		2			
Tipulidae (truefly)	3	0	1				
Veliidae (true bug)	na	0		1			

Table 6: Hardwood Creek Above family list

4.2 Hardwood Creek Below – usually monitored by Team #1; no water as of September 2023

Number of individuals:

• 0 invertebrates were identified in this sample.

Dominant Family:

• N/A

Percent Dominance:

It is assumed that families are more evenly distributed among the sample if the dominant family makes up a lower percentage of the sample.

Year	Dominant Family	% Dominance	Dominant Family (2 nd)	%
				Dominance
2023	N/A	0	N/A	0
2022	Culcidae	54	Elmidae	9
2021	Gammaridae	29	Culicidae	18
2020	Bivalvia	61	Chironomidae	19
2019	Gammaridae	49	Baetidae	16
2018	Baetidae	19	Chironomidae	18
2017	Gammaridae	49	Chironomidae	10
2016	Gammaridae	86	Chironomidae/Coengrioni	3 (each)
			dae/Baetidae	
2015	Gammaridae	65	Baetidae	10
2014	Gammaridae	63	Hydropsychidae	14
2013	Gammaridae	24	Heptageniidae	22
2012	Gammaridae	51	Chironomidae	19
2011	Gammaridae	60	Baetidae	12
2010	Gammaridae	38	Chironomidae	15

Table 7: Hardwood Creek Below data

Note: Gammaridae dominated samples for most years, but make-up a small proportion of the sample when not dominant

Number of Families (identified in a sample):

The higher the diversity, the better.

Year	# Families
2023	0
2022	14
2021	19
2020	9
2019	14
2018	17
2017	17
2016	9
2015	13
2014	10
2013	15
2012	20
2011	11
2010	16

Table 8: Hardwood Creek Below families

Number of EPT Families (pollution sensitive):

EPT (*Ephemeroptera-Plecoptera-Tricoptera or Mayfly-Stonefly-Caddisfly*) are three Orders of invertebrates with low tolerance to pollution. The more of these families in a sample, the better. More than 10-12 families is good.

Year	# EPT Families	% make-up of EPT Families	EPT Families	
2023	0	0	N/A	
2022	2	2	Ephemeridae, Lepidostomatidae	
2021	1	6	Heptageniidae	
2020	4	11	Baetidae, Caenidae, Heptageniidae, Potamanthidae	
2019	3	24	Baetidae, Heptageniidae, Hydropsychidae	
2018	5	37	Baetidae, Caenidae, Heptageniidae, Hydropsychidae,	
			Polymitarcyidae	
2017	3	20	Baetidae, Heptageniidae, Hydropsychidae	
2016	2	4	Baetidae, Heptageniidae	
2015	4	22	Baetidae, Heptageniidae, Hydropsychidae, Leptoceridae	
2014	3	29	Baetidae, Heptageniidae, Hydropsychidae	
2013	4	34	Baetidae, Caenidae, Heptageniidae, Hydropsychidae	
2012	4	17	Baetidae, Ephemeridae, Heptageniidae, Hydropsychidae	
2011	3	27	Baetidae, Heptageniidae, Hydropsychidae	
2010	3	17	Baetidae, Heptageniidae, Hydropsychidae	

Table 9: Hardwood Creek Below EPT families

Family Biotic Index (FBI):

This program identifies macroinvertebrates to the family level. Each family is assigned a tolerance value rating from 0-10. The lower the number, the more sensitive to pollution. The FBI score is the average pollution tolerance of all of the macroinvertebrates identified in a sample.

Year	FBI Score	Score Description
2023	0	N/A
2022	7.1	Poor – very substantial organic pollution likely
2021	5.8	Fairly Poor – Substantial organic pollution likely
2020	6.2	Fairly Poor – Substantial organic pollution likely
2019	4.8	Good – Some organic pollution probable
2018	5.1	Fair – Fairly substantial pollution likely
2017	4.5	Good – Some organic pollution probable
2016	4.3	Good – Some organic pollution probable
2015	4.4	Good – Some organic pollution probable
2014	4.2	Very good – possible slight organic pollution
2013	4.9	Good – Some organic pollution probable
2012	4.6	Good – Some organic pollution probable
2011	4.4	Good – Some organic pollution probable
2010	5.1	Fair – Fairly substantial pollution likely

Table 10: Hardwood Creek Below FBI score

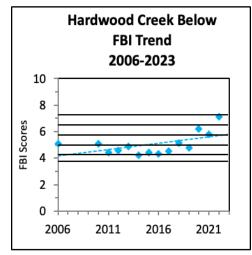


Figure 10. A stream health trend was created using scores calculated for family biotic index (FBI). Contrary to common sense, a descending trendline indicates improvement in the stream health since organisms with sensitivity to water pollution score lower on the family biotic index.

Summary:

Hardwood Creek Below has been sampled 13 consecutive years since 2010, with the first interruption in sampling collection occuring in 2023 when volunteers found no water flowing in the stream. There can be no conclusive FBI score determined this year because no samples were collected.

Based on last year's data, it appears that this stream was moving toward "Poor" health, which was a decline compared to its typical rating of "Fair" to "Good". The family diversity is high, though most families present are represented in smaller proportions.

		st – Hardwood Ci			
Family Name	Tolerance	# Individuals	# Individuals	# Individuals	# Individuals
	Value	2023	2022	2021	2020
Asellidae (crustacean)	8	0		2	
Baetidae (mayfly)	4	0			4
Belostomatidae (true bug)	10	0	7	1	
Caenidae (mayfly)	7	0			1
Calopterygidae	5	0		2	
Chironomidae (truefly)	6	0	5	8	21
Coengrionidae (damselfly)	9	0	2	8	
Corixidae (true bug)	9	0		10	
Corydalidae (alderfly)	0	0	1		
Culcidae (truefly)	8	0	57	25	
Dolichopodidae (truefly)	4	0		1	
Elmidae (beetle)	4	0	9	19	
Empididae (truefly)	4	0	1		
Ephemeridae (mayfly)	4	0	1		
Gammaridae (crustacean)	4	0	8	40	9
Gastropoda (snail)	7	0	4		
Gerridae (true bug)	na	0		7	1
Heptageniidae (mayfly)	4	0		8	6
Hyalellidae (crustacean)	8	0	2		
Hydrophilidae (beetle)	5	0			1
Hydropsychidae (caddisfly)	4	0			
Lepidostomatidae (caddisfly)	1	0	1		
Oligochaeta (aquatic worm)	8	0		1	
Pelecypoda (clam)	7	0	6		69
Pleidae (true bug)	na	0		1	
Potamanthidae (mayfly)	4	0			1
Pyralidae (aquatic moth)	5	0		1	
Sialidae (alderfly)	4	0		2	
Simuliidae (truefly)	6	0			9
Stratiomyidae (truefly)	8	0		2	-
Tipulidae (truefly)	3	0	1		
Veliidae (true bug)	6	0	-	1	

Table 11: Hardwood Creek Below family list

4.3 Clearwater Creek – monitored by Team #1, 8/27/2023

Number of individuals:

A large sample offers more confidence for a more reliable data set. SHEP protocol requires a minimum of 100 individual invertebrates to be picked and identified per sample.

• 152 invertebrates were identified in this sample. This is an adequate sample size.

Dominant Family:

• Gammaridae (Scud)

Gammaridae have a tolerance value of 4 (moderate) on a scale of 0-10 (the lower the tolerance value, the lower their tolerance to pollution). Gammaridae are crustaceans and related to Hyalellidaes. The differentiation between the two families is a tiny flagellum found on the antennae of the Gammaridae. They can be extremely abundant in water bodies without fish and are important in the breakdown of organic matter. They generally live in shallow regions of most waterbodies, and are found in snags and vegetation. They are an important food source for fish and other invertebrate predators. (Guide to Aquatic Invertebrates of the Upper Midwest, R.W. Bouchard, Jr.)

Percent Dominance:

It is assumed that families are more evenly distributed among the sample if the dominant family makes up a lower percentage of the sample.

Year	Dominant Family	% Dominance	Dominant Family (2nd)	% Dominance
2023	Gammaridae	37	Chironomidae	28
2022	Chironomidae	33	Gastropoda	18
2021	Gammaridae	27	Elmidae	20
2020	Chironomidae	29	Hydropsychidae	23
2019	Hydropsychidae	45	Simuliidae	30
2018	Gammaridae	34	Hydropsychidae	22
2017	Gammaridae	37	Hydropsychidae	31
2016	Gammaridae	51	Chironomidae	19
2015	Gammaridae	67	Veliidae	12
2014	Simuliidae	32	Gammaridae	23
2013	Gammaridae	58	Chironomidae	17
2012	Gammaridae	56	Heptageniidae	19
2011	Gammaridae	43	Hydropsychidae	20
2010	Gammaridae	76	Hydropsychidae	8
2009	Hydropsychidae	17	Hyalellidae	14
2008	Chironomidae	26	NA	NA
2007	Heptageniidae	19	NA	NA

Table 12: Clearwater Creek data

Number of Families (identified in a sample):

The higher the diversity, the better.

Year	# Families	Year	# Families
2023	15	2014	11
2022	14	2013	12
2021	17	2012	16
2020	8	2011	19
2019	7	2010	10
2018	12	2009	18
2017	15	2008	18
2016	5	2007	19
2015	10		

Table 13: Clearwater Creek families

Number of EPT Families (pollution sensitive):

EPT (*Ephemeroptera-Plecoptera-Tricoptera or Mayfly-Stonefly-Caddisfly*) are three Orders of invertebrates with low tolerance to pollution. The more of these families in a sample, the better. More than 10-12 families is good.

Year	# EPT Families	% make-up of EPT Families	EPT Families
2023	1	1	Phrygaenidae
2022	0	0	None
2021	1	2	Hydropsychidae
2020	1	23	Hydropsychidae
2019	2	51	Baetidae, Hydropsychidae
2018	1	34	Hydropsychidae
2017	1	31	Hydropsychidae
2016	1	17	Hydropsychidae
2015	3	8	Baetidae, Hydropsychidae, Leptoceridae
2014	2	13	Heptageniidae, Hydropsychidae
2013	3	4.5	Heptageniidae, Hydropsychidae, Leptoceridae
2012	2	20	Heptageniidae, Hydropsychidae
2011	4	28	Baetidae, Heptageniidae, Hydropsychidae, Leptoceridae
2010	2	9	Heptageniidae, Hydropsychidae
2009	5	36	Baetidae, Caenidae, Heptageniidae, Hydropsychidae, Phrygaenidae
2008	4	NA	NA
2007	4	NA	NA

Table 14: Clearwater Creek EPT families

Family Biotic Index (FBI):

This program identifies macroinvertebrates to the family level. Each family is assigned a tolerance value rating from 0-10. The lower the number, the more sensitive to pollution. The FBI score is the average pollution tolerance of all of the macroinvertebrates identified in a sample.

Year	FBI Score	Score Description
2023	5.8	Fairly Poor – Substantial organic pollution likely
2022	6.2	Fairly Poor – Substantial pollution likely
2021	5.0	Good – Some organic pollution probable
2020	4.8	Good – Some organic pollution probable
2019	4.8	Good – Some organic pollution probable
2018	4.7	Good – Some organic pollution probable
2017	4.5	Good – Some organic pollution probable
2016	4.6	Good – Some organic pollution probable
2015	4.4	Good – Some organic pollution probable
2014	5.6	Fair – Fairly substantial pollution likely
2013	4.9	Good – Some organic pollution probable
2012	4.6	Good – Some organic pollution probable
2011	4.7	Good – Some organic pollution probable
2010	4.5	Good – some organic pollution probably
2009	6.3	Fairly Poor – Substantial pollution likely
2008	5.7	Fair – Fairly substantial pollution likely
2007	5.9	Fairly Poor – Substantial pollution likely

Table 15: Clearwater Creek FBI score

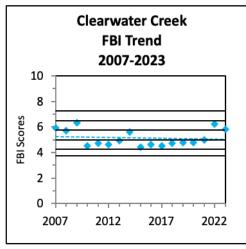


Figure 11. A stream health trend was created using scores calculated for family biotic index (FBI). Contrary to common sense, a descending trendline indicates improvement in the stream health since organisms with sensitivity to water pollution score lower on the family biotic index.

Summary:

Clearwater Creek has been monitored 17 consecutive years since 2007, and the health trend appears stable. The FBI score has indicated "Fairly Poor" health since 2022, which is a decline in health score compared to years of previous data scoring "Good". The diversity is high in 2023 and one sensitive species was represented. Gammaridae, Chironomidae, and Asellidae dominate the sample, and other families present are represented in smaller proportions. Gammaridae has regularly over-dominated the samples at this site. The number of families represented each year varies. Variability in family representation and percent make-up may be caused by environmental factors including water levels, habitat availability, collection location, or other sources of disturbance in the area.

	Fam	ily List – Clearw	ater Creek		
Family Name	Tolerance Value	# Individuals 2023	# Individuals 2022	# Individuals 2021	# Individuals 2020
Asellidae (crustacean)	8	22	2	2	
Baetidae (mayfly)	4				10
Belostomatidae (true bug)	10	2		1	
Calopterygidae (damselfly)	5	1	2		3
Chaoboridae (truefly)	8		1		
Chironomidae (truefly)	6	42	35	7	31
Coengrionidae (damselfly)	9	3			
Collembola (springtail)	10			1	
Corixidae (truebug)	9		6		
Corydalidae (dobsonfly)	0	1			
Decapoda (crustacean)	6			18	
Dytiscidae (beetle)	5	1		1	
Elmidae (beetle)	4	5	4	26	17
Gammaridae (crustacean)	4	56	10	35	24
Gastropoda (snails)	7	6	19	14	2
Gerridae (true bug)	na		1	5	
Hirudinea (leech)	10	4		3	
Hyalellidae (crustacean)	8	4		1	
Hydropsychidae (caddisfly)	4			3	25
Oligochaeta (worm)	8	3	3		1
Pelecypoda (clams)	7	1			
Phrygaenidae (caddisfly)	4	1			
Sciomyzidae (truefly)	6		2		
Simuliidae (truefly)	6		7	1	4
Stratiomyidae	8		3	1	
Tipuliidae (truefly)	3			2	
Veliidae (true bug)	6		11	9	

Table 16: Clearwater Creek family list

4.4 Rice Creek Above – monitored by Team #2, 9/23/2023

Number of individuals:

A large sample offers more confidence for a more reliable data set. SHEP protocol requires a minimum of 100 individual invertebrates to be picked and identified per sample.

• 113 invertebrates were identified in this sample. This is an adequate sample size.

Dominant Family:

• Corixidae (Water boatmen)

Corixids have a tolerance value of 9 (high) on a scale of 0-10 (the lower the tolerance value, the lower their tolerance to pollution). Corixids are found in areas of standing or slow flowing water. Most corixids feed by disturbing soft sediments and detritus. They breathe by using an air bubble held under their wings. (Guide to Aquatic Invertebrates of the Upper Midwest, R.W. Bouchard, Jr).

Percent Dominance:

It is assumed that families are more evenly distributed among the sample if the dominant family makes up a lower percentage of the sample.

Year	Dominant Family	% Dominance	Dominant Family (2 nd)	% Dominance
2023	Corixidae	30	Hyalellidae	27
2022	Hyalellidae	22	Gammaridae	20
2021	Hyalellidae	35	Chironomidae	30
2020	Chironomidae	53	Simuliidae	29
2019	Corixidae	52	Hyalellidae	19
2018	Chironomidae	59	Hydropsychidae	15
2017	Chironomidae	41	Hyalellidae	29
2016	Chironomidae	65	Hyalellidae	15
2015	Chironomidae	62	Coengrionidae	22
2014	Chironomidae	61	Gammaridae	15
2013	Chironomidae	81.5	Pleidae	7
2012	Coengrionidae	53	Hyalellidae	34
2011	Hyalellidae	70	Coengrionidae	9
2010	Hyalellidae	66	Caenidae	14
2009	Chironomidae	51	Coengrionidae	28
2008	Hyalellidae	38	NA	NA
2007	Coengrionidae	55	NA	NA
2006	Coengrionidae	87	NA	NA

Table 17: Rice Creek Above data

Number of Families (identified in a sample):

The higher the diversity, the better

Year	# Families	Year	# Families
2023	11	2014	11
2022	20	2013	13
2021	6	2012	10
2020	12	2011	15
2019	7	2010	11
2018	11	2009	11
2017	14	2008	14
2016	6	2007	5
2015	8	2006	11

Table 18: Rice Creek Above families

Number of EPT Families (pollution sensitive):

EPT (*Ephemeroptera-Plecoptera-Tricoptera or Mayfly-Stonefly-Caddisfly*) are three Orders of invertebrates with low tolerance to pollution. The more of these families in a sample, the better. More than 10-12 families is good.

Year	# EPT Families	% make-up of EPT Families	EPT Families
2023	1	1	Baetidae
2022	2	10	Caenidae, Phryganeidae
2021	0	0	NA
2020	4	14	Baetidae, Caenidae, Hydropsychidae, Phrygaenidae
2019	0	0	NA
2018	2	17	Baetidae, Hydropsychidae
2017	1	0.8	Baetidae
2016	1	2.5	Hydropsychidae
2015	2	1	Baetidae, Caenidae
2014	1	3	Caenidae
2013	1	0.2	Leptoceridae
2012	4	8	Baetidae, Caenidae, Branchycentridae, Hydropsychidae
2011	3	8	Baetidae, Caenidae, Hydropsychidae
2010	6	28	Caenidae, Leptohyphidae, Hydropsychidae, Leptoceridae, Limnephilidae, Polycentropodidae
2009	3	7	Baetidae, Hydropsychidae, Oligonueriidae
2008	2	NA	NA
2007	0	0	NA
2006	2	NA	NA

Table 19: Rice Creek Above EPT families

Family Biotic Index (FBI):

This program identifies macroinvertebrates to the family level. Each family is assigned a tolerance value rating from 0-10. The lower the number, the more sensitive to pollution. The FBI score is the average pollution tolerance of all of the macroinvertebrates identified in a sample.

Year	FBI Score	Score Description
2023	7.8	Very Poor – severe organic pollution likely
2022	7.0	Poor – very substantial organic pollution likely
2021	7.1	Poor – very substantial organic pollution likely
2020	5.8	Fairly Poor – substantial pollution likely
2019	7.9	Very Poor – severe organic pollution likely
2018	6.0	Fairly Poor – substantial pollution likely
2017	7.3	Very Poor – severe organic pollution likely
2016	6.7	Poor – very substantial pollution likely
2015	6.9	Poor – very substantial pollution likely
2014	5.9	Fairly poor – substantial pollution likely
2013	6.1	Fairly poor – substantial pollution likely
2012	8.3	Very Poor – severe organic pollution likely
2011	7.8	Very Poor – severe organic pollution likely
2010	7.3	Very Poor – severe organic pollution likely
2009	7.0	Poor – very substantial pollution likely
2008	7.0	Poor – very substantial pollution likely
2007	7.9	Very Poor – severe organic pollution likely
2006	8.8	Very Poor – severe organic pollution likely

Table 20: Rice Creek Above FBI score

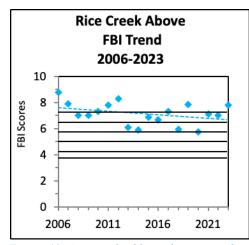


Figure 12. A stream health trend was created using scores calculated for family biotic index (FBI). Contrary to common sense, a descending trendline indicates improvement in the stream health since organisms with sensitivity to water pollution score lower on the family biotic index.

Summary:

Rice Creek Above has been sampled 18 consecutive years since 2006. In 2023, the FBI score indicated "Very Poor" health. FBI scores have been variable and ranged between "Fairly Poor" to "Very Poor" since 2006. The number of families is lower in 2023 than in 2022; however, more diverse than some years. Corixidae, Hyalellidae, and Pelecypoda dominated the sample while other families are represented in low proportions. Pollution-sensitive (EPT) families have usually made-up a very minor proportion of the sample collection every year. Variability in family representation may be caused by environmental factors including water levels, habitat availability, collection location, or other sources of disturbance in the area.

	Family List – Rice Creek Above					
Family Name	Tolerance Value	# Individuals 2023	# Individuals 2022	# Individuals 2021	# Individuals 2020	
Aeshnidae (dragonfly)	3	1				
Asellidae (crustacean)	8		1		1	
Baetidae (mayfly)	4	1			1	
Caenidae (mayfly)	7		23		1	
Chironomidae (truefly)	6		5	34	269	
Calopterygidae (damselfly)	5			1		
Coengrionidae (damselfly)	9	2	7	25	4	
Corixidae (true bug)	9	34	28			
Dytiscidae (beetle)	5	5				
Elmidae (beetle)	4		1		1	
Gammaridae (crustacean)	4		47	12	2	
Gastropoda (snail)	7	2	35		3	
Gerridae (truebug)	N/A	3				
Haliplidae (beetle)	7	3	1			
Hirudinea (leech)	10		3			
Hyalellidae (crustacean)	8	31	52	40	8	
Hydropsychidae (caddisfly)	4				69	
Oligonueriidae (mayfly)	2		10			
Pelecypoda (clam)	7	20	23			
Phryganeidae (caddisfly)	4		1		1	
Pleidae (truebug)	N/A	11	1			
Scyomyzidae (truefly)	6		1			
Simuliidae (true fly)	6				146	
Tipuliidae (true fly)	3			1		

Table 21: Rice Creek Above family list

4.5 Rice Creek Below – monitored by Team #2, 9/23/2023

Number of individuals:

A large sample offers more confidence for a more reliable data set. SHEP protocol requires a minimum of 100 individual invertebrates to be picked and identified per sample.

• 191 invertebrates were identified in this sample. This is an adequate sample size.

Dominant Family:

• Hyalellidae (scud)

Hyalellidae have a tolerance value of 8 (high) on a scale of 0-10 (the lower the tolerance value, the lower their tolerance to pollution). Hyalellidae are crustaceans. They can be extremely abundant in water bodies without fish and are important in the breakdown of organic matter. They generally live in shallow regions of most waterbodies, and are found in snags and vegetation. They are an important food source for fish and other invertebrate predators. (Guide to Aquatic Invertebrates of the Upper Midwest, R.W. Bouchard, Jr).

Percent Dominance:

It is assumed that families are more evenly distributed among the sample if the dominant family makes up a lower percentage of the sample.

Year	Dominant Family	% Dominance	Dominant Family (2 nd)	% Dominance
2023	Hyalellidae	73	Pleidae	6
2022	Gammaridae	94	Coengrionidae	2
2021	Coengrionidae	33	Hyalellidae	23
2020	Chironomidae	53	Simuliidae	12
2019	Chironomidae	34	Simuliidae	29
2018	Chironomidae	75	Gammaridae	14
2017	Chironomidae	61	Hyalellidae	31
2016	Chironomidae	53	Coengrionidae, Hyalellidae	17 (each)
2015	Chironomidae	54	Coengrionidae	21
2014	Chironomidae	67	Hyalellidae	13
2013	Chironomidae	72	Gastropoda	8
2012	Hyalellidae	40	Chironomidae	12
2011	Hyalellidae	75	Simuliidae	10
2010	Hyalellidae	80	Coengrionidae	9
2009	Simuliidae	64	Chironomidae	19
2008	Corixidae	34	NA	NA
2007	Chironomidae	63	NA	NA
2006	Coengrionidae	65	NA	NA

Table 22: Rice Creek Below data

Number of Families (identified in a sample):

The higher the diversity, the better

Year	# Families	Year	# Families
2023	13	2014	9
2022	8	2013	16
2021	12	2012	17
2020	10	2011	15
2019	11	2010	15
2018	9	2009	8
2017	5	2008	7
2016	8	2007	10
2015	9	2006	12

Table 23: Rice Creek Below families

Number of EPT Families (pollution sensitive):

EPT (Ephemeroptera-Plecoptera-Tricoptera or Mayfly-Stonefly-Caddisfly) are three classes of invertebrates with low tolerance to pollution. The more of these families in a sample, the better. More than 10-12 families is good.

Year	# EPT	% make-up	EPT Families
	Familie	of EPT	
	S	Families	
2023	2	2	Baetidae, Caenidae
2022	1	0.5	Baetidae
2021	2	4	Baetidae, Hydroptilidae
2020	2	13	Hydropsychidae, Phryganeidae
2019	3	14	Baetidae, Hydropsychidae, Phryganeidae
2018	2	3	Caenidae, Hydropsychidae
2017	0	0	NA
2016	2	10	Caenidae, Hydropsychidae
2015	3	3	Caenidae, Hydropsychidae, Leptoceridae
2014	2	7	Caenidae, Hydropsychidae
2013	0	0	NA
2012	0	0	NA
2011	3	3	Baetidae, Caenidae, Hydropsychidae
2010	4	7	Caenidae, Tricorythidae, Leptoceridae, Sericostomatidae
2009	2	4	Hydropsychidae, Hydroptilidae
2008	7	NA	NA
2007	10	NA	NA
2006	12	NA	NA

Table 24: Rice Creek Below EPT families

Family Biotic Index (FBI):

This program identifies macroinvertebrates to the family level. Each family is assigned a tolerance value rating from 0-10. The lower the number, the more sensitive to pollution. The FBI score is the average pollution tolerance of all of the macroinvertebrates identified in a sample.

Year	FBI Score	Score Description
2023	7.5	Very Poor – severe organic pollution likely
2022	4.2	Good - Some organic pollution probable
2021	7.7	Very Poor – severe organic pollution likely
2020	5.7	Fair – Fairly substantial pollution likely
2019	5.9	Fairly Poor – substantial pollution likely
2018	5.9	Fairly Poor – substantial pollution likely
2017	6.7	Poor – very substantial pollution likely
2016	6.7	Poor – very substantial pollution likely
2015	6.8	Poor – very substantial pollution likely
2014	6.2	Fairly Poor – substantial pollution likely
2013	6.4	Fairly Poor – substantial pollution likely
2012	7.4	Very Poor – severe organic pollution likely
2011	7.8	Very Poor – severe organic pollution likely
2010	7.8	Very Poor – severe organic pollution likely
2009	6.3	Fairly Poor – substantial pollution likely
2008	7.3	Very Poor – severe organic pollution likely
2007	6.9	Very Poor – severe organic pollution likely
2006	8.3	Very Poor – severe organic pollution likely

Table 25: Rice Creek Below FBI score

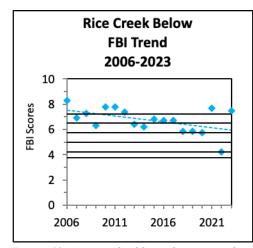


Figure 13. A stream health trend was created using scores calculated for family biotic index (FBI). Contrary to common sense, a descending trendline indicates improvement in the stream health since organisms with sensitivity to water pollution score lower on the family biotic index.

Summary:

Rice Creek Below has been sampled 18 consecutive years since 2006. In 2023, the FBI score indicated "Very Poor" health, which is a drastic change from 2022 but more typical of this site. FBI scores usually range between "Fairly Poor" to "Very Poor" since 2006. The family make-up varies from year-to-year, and the families are unevenly distributed. In 2023, scuds make up a very large portion of the sample, dominating by 73 percent. All other families identified were represented in low proportion. The FBI score in 2023 reflects the tolerance value of the scud. Variability in family representation may be caused by environmental factors including water levels, habitat availability, collection location, or other sources of disturbance in the area.

Family List – Rice Creek Below						
Family Name	Tolerance Value	# Individuals 2023	# Individuals 2022	# Individuals 2021	# Individuals 2020	
Asellidae (crustacean)	8		2			
Baetidae (mayfly)	4	3	1	4		
Belostomatidae (true bug)	10					
Caenidae (mayfly)	7	1				
Ceratopogonidae (truefly)	6				1	
Chironomidae (truefly)	6	8	2	19	73	
Coengrionidae (damselfly)	9	3	3	42	3	
Corixidae (true bug)	9	1	2	4		
Culicidae (truefly)	8			9		
Dytiscidae (beetle)	5	1				
Empididae (truefly)	6					
Gammaridae (crustacean)	4	10	176	6	10	
Gastropoda (snail)	7	3	1	1		
Gerridae (true bug)	na	1		5		
Hyalellidae (crustacean)	8	140		29	5	
Hydropsychidae (caddisfly)	4				17	
Hyrdroptilidae (caddisfly)	4			1		
Nematoda (round worms)	5				1	
Nepidae (true bug)	8				1	
Pelecypoda (clam)	7	3	1			
Phrygaenidae (caddisfly)	4				1	
Pleidae (true bug)	na	11		8		
Pyralide (aquatic moth)	5	6		1		
Scirtidae (beetle)	7					
Simuliidae (truefly)	6				27	

Table 26: Rice Creek Below family list

4.6 Rice Creek Irondale – monitored by Team #2, 9/23/2023

Number of individuals:

A large sample offers more confidence for a more reliable data set. SHEP protocol requires a minimum of 100 individual invertebrates to be picked and identified per sample.

• 142 invertebrates were identified in this sample. This is an adequate sample size.

Dominant Family:

• Hyalellidae (scud)

Hyalellidae have a tolerance value of 8 (high) on a scale of 0-10 (the lower the tolerance value, the lower their tolerance to pollution). Hyalellidae are crustaceans. They can be extremely abundant in water bodies without fish and are important in the breakdown of organic matter. They generally live in shallow regions of most waterbodies, and are found in snags and vegetation. They are an important food source for fish and other invertebrate predators. (Guide to Aquatic Invertebrates of the Upper Midwest, R.W. Bouchard, Jr).

Percent Dominance:

It is assumed that families are more evenly distributed among the sample if the dominant family makes up a lower percentage of the sample.

Year	Dominant Family	% Dominance	Dominant Family (2nd)	% Dominance
2023	Hyalellidae	28	Coengrionidae	19
2022	Coengrionidae	32	Gammaridae	21
2021	Chironomidae	31	Hyalellidae	24
2020	Chironomidae	69	Hydropsychidae	22
2019	Hyalellidae	51	Chironomidae	17
2018	Chironomidae	82	Hyalellidae	9
2017	Chironomidae	44	Coengrionidae	16
2016	Chironomidae	47	Hyalellidae, Corixidae	14 (each)
2015	Hyalellidae	39	Chironomidae	38
2014	Chironomidae	60	Hyalellidae	13
2013	Chironomidae	46	Hyalellidae/Oligochaeta	16 (each)
2012	Chironomidae	61	Coengrionidae	21

Table 27: Rice Creek Irondale data

Number of Families (identified in a sample):

The higher the diversity, the better

Year	# Families	Year	# Families
2023	15	2016	7
2022	19	2015	8
2021	17	2014	13
2020	10	2013	13
2019	11	2012	13
2018	9	2012	13
2017	11		

Table 28: Rice Creek Irondale families

Number of EPT Families (pollution sensitive):

EPT (*Ephemeroptera-Plecoptera-Tricoptera or Mayfly-Stonefly-Caddisfly*) are three classes of invertebrates with low tolerance to pollution. The more of these families in a sample, the better. More than 10-12 families is good.

Year	# EPT Families	% make-up of EPT	EPT Families	
	r'annies	Families		
2023	3	2	Baetidae, Caenidae, Leptoceridae	
2022	1	1	Sericostomatidae	
2021	3	5	Baetidae, Caenidae, Hydroptilidae	
2020	3	23	Baetidae, Hydropsychidae, Phrygaeidae	
2019	1	10	Hydropsychidae	
2018	3	6	Baetidae, Caenidae, Hydropsychidae	
2017	3	14	Baetidae, Ephemeridae, Hydropsychidae	
2016	2	20	Caenidae, Hydropsychidae	
2015	2	16	Baetidae, Hydropsychidae	
2014	3	3	Baetidae, Caenidae, Hydropsychidae	
2013	1	1	Hydropsychidae	
2012	2	2	Baetidae, Heptageniidae	

Table 29: Rice Creek Irondale EPT families

This program identifies macroinvertebrates to the family level. Each family is assigned a tolerance value rating from 0-10. The lower the number, the more sensitive to pollution. The FBI score is the average pollution tolerance of all of the macroinvertebrates identified in a sample.

Year	FBI Score	Score Description
2023	7.2	Poor – very substantial pollution likely
2022	7.0	Poor – very substantial pollution likely
2021	7.2	Poor – very substantial pollution likely
2020	5.4	Fair – fairly substantial pollution likely
2019	7.2	Poor – very substantial pollution likely
2018	6.1	Fairly Poor – substantial pollution likely
2017	6.4	Fairly Poor – substantial pollution likely
2016	6.7	Poor – very substantial pollution likely
2015	6.7	Poor – very substantial pollution likely
2014	6.0	Fairly Poor – substantial pollution likely
2013	6.8	Poor – very substantial pollution likely
2012	6.8	Poor – very substantial pollution likely

Table 30: Rice Creek Irondale FBI score

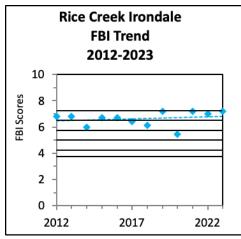


Figure 14. A stream health trend was created using scores calculated for family biotic index (FBI). Contrary to common sense, a descending trendline indicates improvement in the stream health since organisms with sensitivity to water pollution score lower on the family biotic index.

Summary:

Rice Creek Irondale has been sampled 12 consecutive years since 2012. In 2023, the FBI score indicated "Poor" health. Hyalellidae dominated the sample in 2023. The family diversity is often unevenly distributed with pollution tolerant families over-dominating the samples. The FBI trend shows stable health. Variability in family representation may be caused by environmental factors including water levels, habitat availability, collection location, or other sources of disturbance in the area.

	Tolerance	y List – Rice Cre # Individuals	# Individuals	# Individuals	# Individuals
Family Name	Value	2022	2021	2020	2019
Aeshnidae	3		1		
Asellidae (crustacean)	8	1	3		4
Baetidae (mayfly)	4	1		5	2
Belostomatidae (true bug)	10			2	1
Caenidae (mayfly)	7	1		1	
Ceratopogonidae (truefly)	6	5			1
Chironomidae (truefly)	6	11	12	48	156
Coengrionidae (damselfly)	9	27	33	36	
Collembola (springtail)	10		1		
Corixidae (true bug)	9	1	3	3	
Culicidae (truefly)	8		2	2	
Dytiscidae (beetle)	5			1	
Elmidae (beetle)	4	1	2		
Gammaridae (crustacean)	4	14	22	7	5
Gastropoda (snail)	7	8	6	2	
Gerridae (truebug)	na		2		
Gyrinidae (beetle)	9		1		
Haliplidae (beetle)	7		1	2	
Hyalellidae (crustacean)	8	40	7	37	2
Hydrophilidae (beetle)	5			1	
Hydropsychidae (caddisfly)	4				50
Hydroptilidae (caddisfly)	4			1	
Leptoceridae (caddisfly)	4	1			
Lestidae (damselfly)	9		1		
Nepidae (truebug)	8		1		
Notonectidae (true bug)	na			1	
Oligochaeta (aquatic worm)	8				
Pelecypoda (clams)	7	14	4	2	
Phryganeidae (caddisfly)	4				1
Pleidae (true bug)	na	16	1	2	
Scirtidae (beetle)	7				
Sericostomatidae (caddisfly)	3		1		
Simuliidae (truefly)	6				1
Turbellaria (flatworm)	4				5

Table 31: Rice Creek Irondale family list

4.7 Locke Lake Above – monitored by Team #3, 9/17/2023

Number of individuals:

A large sample offers more confidence for a more reliable data set. SHEP protocol requires a minimum of 100 individual invertebrates to be picked and identified per sample.

• 124 invertebrates were identified in this sample. This is an adequate sample size.

Dominant Family:

• Chironomidae (non-biting midge)

Chironomidae have a tolerance value of 6 (moderate) on a scale of 0-10 (the lower the tolerance value, the lower their tolerance to pollution). They are a very abundant and diverse group of aquatic insects, and it is common for them to dominate samples (Guide to Aquatic Invertebrates of the Upper Midwest, R.W. Bouchard, Jr).

Percent Dominance:

It is assumed that families are more evenly distributed among the sample if the dominant family makes up a lower percentage of the sample.

Year	Dominant Family	% Dominance	Dominant Family (2 nd)	% Dominance
2023	Chironomidae	25	Pelecypoda	18
2022	Oligochaeta	24	Baetidae	22
2021	Chironomidae	27	Baetidae	18
2020	Baetidae	76	Hydropsychidae	13
2019	Simuliidae	40	Baetidae	31
2018	Chironomidae	56	Baetidae	17
2017	Simuliidae	79	Baetidae	7
2016	Simuliidae	62	Baetidae	17
2015	Hydropsychidae	53	Chironomidae	16
2014	Hydropsychidae	67	Chironomidae	14
2013	Hydropsychidae	42	Nematoda	25
2012	Chironomidae	29	Baetiscidae	23
2011	Simuliidae	63	Baetidae	17
2010	Chironomidae	46	Hyalellidae	15
2009	Chironomidae	35	Hydropsychidae	11
2008	Chironomidae	30	NA	NA
2007	Baetidae	22	NA	NA
2006	Hydropsychidae	58	NA	NA

Table 32: Locke Lake Above data

Number of Families (identified in a sample):

The higher the diversity, the better

Year	# Families	Year	# Families
2023	14	2014	9
2022	11	2013	9
2021	16	2012	18
2020	9	2011	12
2019	11	2010	13
2018	14	2009	18
2017	9	2008	14
2016	9	2007	12
2015	9	2006	12

Table 33: Locke Lake Above families

Number of EPT Families (pollution sensitive):

EPT (*Ephemeroptera-Plecoptera-Tricoptera or Mayfly-Stonefly-Caddisfly*) are three classes of invertebrates with low tolerance to pollution. The more of these families in a sample, the better. More than 10-12 families is good.

Year	# EPT	% make-up of	EPT Families		
	Familie	EPT Families			
	S				
2023	3	18	Heptageniidae, Helicopsychidae, Leptoceridae		
2022	3	33	Baetidae, Hydropsychidae, Philoptamidae		
2021	4	34	Baetidae, Heptageniidae, Hydropsychidae, Hydroptilidae		
2020	3	89	Baetidae, Hydropsychidae, Philopotomidae		
2019	2	33	Baetidae, Hydropsychidae		
2018	2	18	Baetidae, Hydropsychidae		
2017	1	7	Baetidae		
2016	3	24	Baetidae, Hydropsychidae, Philopotomidae		
2015	2	55	Baetidae, Hydropsychidae		
2014	2	69	Hydropsychidae, Psychomyiidae		
2013	2	44	Hydropsychidae, Hydroptilidae		
2012	6	45	Baetiscidae, Heptageniidae, Hydropsychidae, Hydroptilidae, Philoptamidae, Psychomyiidae		
2011	3	28	Baetidae, Hydropsychidae, Philoptamidae		
2010	4	15	Baetidae, Heptageniidae, Hydropsychidae, Philoptamidae		
2009	3	20	Baetiscidae, Heptageniidae, Hydropsychidae		
2008	4	NA	NA		
2007	3	NA	NA		
2006	2	NA	NA		

Table 34: Locke Lake Above EPT families

This program identifies macroinvertebrates to the family level. Each family is assigned a tolerance value rating from 0-10. The lower the number, the more sensitive to pollution. The FBI score is the average pollution tolerance of all of the macroinvertebrates identified in a sample.

Year	FBI Score	Score Description
2023	5.8	Fairly Poor – substantial organic pollution likely
2022	5.4	Fair – fairly substantial pollution likely
2021	5.1	Fair – fairly substantial pollution likely
2020	4.1	Very Good – possible slight organic pollution
2019	5.6	Fair – fairly substantial pollution likely
2018	5.7	Fair – fairly substantial pollution likely
2017	5.8	Fairly Poor – substantial pollution likely
2016	5.5	Fair – fairly substantial pollution likely
2015	4.5	Good – some organic pollution probable
2014	4.4	Good – some organic pollution probable
2013	4.9	Good – some organic pollution probable
2012	5.2	Fair – fairly substantial pollution likely
2011	5.4	Fair – fairly substantial pollution likely
2010	5.9	Fairly Poor – substantial pollution likely
2009	6.1	Fairly Poor – substantial pollution likely
2008	5.7	Fair – fairly substantial pollution likely
2007	5.5	Fair – fairly substantial pollution likely
2006	5.0	Fair – fairly substantial pollution likely

Table 35: Locke Lake Above FBI score

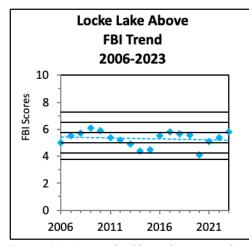


Figure 15. A stream health trend was created using scores calculated for family biotic index (FBI). Contrary to common sense, a descending trendline indicates improvement in the stream health since organisms with sensitivity to water pollution score lower on the family biotic index.

Summary:

Locke Lake Above has been sampled 18 consecutive years since 2006. In 2023, the FBI score indicates "Fairly Poor" health. The FBI trend is stable, but the FBI scores appear to be undulating. Stream health scores have ranged between "Fairly Poor" to "Very Good". Over the years of monitoring, the distribution of families has been uneven. In 2023, Chironomidae dominated the sample, followed by Pelecypoda, Elmidae, and Leptoceridae. Three sensitive species were represented, including Leptoceridae which was collected for the first time at this site. Variability in family representation may be caused by environmental factors including water levels, habitat availability, collection location, or other sources of disturbance in the area.

	Fam	ily List – Locke	Lake Above		
Family Name	Tolerance Value	# Individuals 2023	# Individuals 2022	# Individuals 2021	# Individuals 2020
Asellidae (crustacean)	8	3	1	1	
Baetidae (mayfly)	4		42	38	111
Calopterygidae (damselfly)	5	5			
Chironomidae (truefly)	6	3	30	55	4
Coengrionidae (damselfly)	9	1			
Corixidae (truebug)	9	1		1	
Decapoda (crustacean)	6	6		17	
Elmidae (beetle)	4	17	36	34	6
Gammaridae (crustacean)	4		4		
Gastropoda (snail)	7	6			
Gerridae (true bug)	na			1	
Helicopsychidae (caddisfly)	3	2			
Heptageniidae (mayfly)	4	5		5	
Hirundinea (leech)	10	1	1		
Hyalellidae (crustacean)	8			3	
Hydracarina (aquatic spider)	na			1	
Hydropsychidae (caddisfly)	4		15	27	19
Hydroptilidae (caddisfly)	4			1	
Leptoceridae	4	15			
Nematoda (round worm)	5				1
Oligochaeta (aquatic worm)	8	7	45	3	1
Pelecypoda (clams)	7	22	5	18	
Philopotamidae (caddisfly)	3		6		1
Pyralidae (aquatic moth)	5			1	
Simuliidae (truefly)	6		4	1	3

Table 36: Locke Lake Above family list

4.8 Locke Lake Below – monitored by Team #3, 9/17/2023

Number of individuals:

A large sample offers more confidence for a more reliable data set. SHEP protocol requires a minimum of 100 individual invertebrates to be picked and identified per sample.

• 203 invertebrates were identified in the sample. This is an adequate sample size.

Dominant Family:

• Chironomidae (non-biting midges)

Chironomidae have a tolerance value of 6 (moderate) on a scale of 0-10 (the lower the tolerance value, the lower their tolerance to pollution). They are a very abundant and diverse group of aquatic insects, and it is common for them to dominate samples (Guide to Aquatic Invertebrates of the Upper Midwest, R.W. Bouchard, Jr).

Percent Dominance:

It is assumed that families are more evenly distributed among the sample if the dominant family makes up a lower percentage of the sample.

Year	Dominant Family	% Dominance	Dominant Family (2 nd)	% Dominance
2023	Chironomidae	30	Oligochaeta	18
2022	Chrionomidae	35	Hydropsychidae	23
2021	Hydropsychidae	53	Baetidae	32
2020	Hydropsychidae	66	Chironomidae	25
2019	Chironomidae	38	Simuliidae	25
2018	Chironomidae	64	Hydropsychidae	9
2017	Simuliidae	54	Chironomidae	26
2016	Simuliidae	73	Hydropsychidae	13
2015	Chironomidae	72	Hydropsychidae	13
2014	Hydropsychidae	49	Chironomidae, Simuliidae	18 (each)
2013	Chironomidae	57	Hydropsychidae	57
2012	Chironomidae	61	Hydropsychidae	61
2011	Simuliidae	80	Chironomidae	80
2010	Chironomidae	42	Philopotomidae	42
2009	Hydropsychidae	47	Chironomidae	28
2008	Hydropsychidae	42	NA	NA
2007	Chironomidae	37	NA	NA
2006	Chironomidae	43	NA	NA

Table 37: Locke Lake Below data

Number of Families (identified in a sample):

The higher the diversity, the better.

Year	# Families	Year	# Families
2023	13	2014	9
2022	12	2013	14
2021	10	2012	15
2020	9	2011	13
2019	13	2010	11
2018	15	2009	12
2017	11	2008	10
2016	7	2007	9
2015	10	2006	8

Table 38: Locke Lake Below families

Number of EPT Families (pollution sensitive):

EPT (*Ephemeroptera-Plecoptera-Tricoptera or Mayfly-Stonefly-Caddisfly*) are three Orders of invertebrates with low tolerance to pollution. The more of these families in a sample, the better. More than 10-12 families is good.

Year	# EPT Familie	% make-up of EPT Families	EPT Families
		EFI Fammes	
	S		
2023	3	27	Baetidae, Hydropsychidae, Philopotamidae
2022	5	42	Baetidae, Hydropsychidae Leptophlebiidae, Philopotamidae, Polycentropodidae
2021	3	86	Baetidae, Hydropsychidae, Philopotamidae
2020	3	81	Baetidae, Hydropsychidae, Philopotamidae
2019	3	24	Baetidae, Hydropsychidae, Philopotamidae
2018	2	14	Baetidae, Hydropsychidae
2017	2	10	Baetidae, Hydropsychidae
2016	2	17	Baetidae, Hydropsychidae
2015	1	13	Hydropsychidae
2014	2	56	Baetidae, Hydropsychidae
2013	2	25	Baetidae, Hydropsychidae
2012	3	23	Heptageniidae, Hydropsychidae, Philopotamidae
2011	3	11	Baetidae, Hydropsychidae, Philopotamidae
2010	5	41	Baetidae, Hydropsychidae, Hydroptilidae, Philopotamidae, Polycentropodidae
2009	2	53	Baetidae, Hydropsychidae
2008	3	NA	NA
2007	2	NA	NA
2006	3	NA	NA

Table 39: Locke Lake Below EPT families

This program identifies macroinvertebrates to the family level. Each family is assigned a tolerance value rating from 0-10. The lower the number, the more sensitive to pollution. The FBI score is the average pollution tolerance of all of the macroinvertebrates identified in a sample.

Year	FBI Score	Score Description
2023	5.5	Fair – fairly substantial pollution likely
2022	5.1	Good – some organic pollution probable
2021	4.2	Very Good – possible slight organic pollution
2020	4.0	Very Good – possible slight organic pollution
2019	5.5	Fair – fairly substantial pollution likely
2018	5.5	Fair – fairly substantial pollution likely
2017	5.8	Fairly Poor – substantial pollution likely
2016	5.7	Fair – fairly substantial pollution likely
2015	5.7	Fair – fairly substantial pollution likely
2014	4.8	Good – some organic pollution probable
2013	5.6	Fair – fairly substantial pollution likely
2012	5.6	Fair – fairly substantial pollution likely
2011	5.7	Fair – fairly substantial pollution likely
2010	5.0	Good – some organic pollution probable
2009	5.0	Good – some organic pollution probable
2008	5.1	Good – some organic pollution probable
2007	5.7	Fair – fairly substantial pollution likely
2006	5.3	Fair – fairly substantial pollution likely

Table 40: Locke Lake Below FBI score

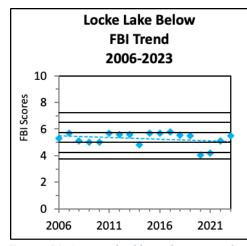


Figure 16. A stream health trend was created using scores calculated for family biotic index (FBI). Contrary to common sense, a descending trendline indicates improvement in the stream health since organisms with sensitivity to water pollution score lower on the family biotic index.

Summary:

Locke Lake Below has been sampled 18 consecutive years since 2006. In 2023, the FBI score indicated "Fair" health. The FBI trend appears stable, and scores have ranged between Very Good and Fairly Poor. The FBI scores have remained consistent throughout most years of sampling. The EPT families represented are similar throughout the years; however, the proportion of their make up in the samples has fluctuated. The number of families represented is variable each year; but families including Baetidae, Chironomidae, Hydropsychidae, and Simuliidae are usually represented. Chironomidae dominated in 2023. It has maintained presence each year and has dominated many times throughout the years.

The dominant family has shifted from year to year; however, tolerance values for the families present are similar, and therefore only slightly impact changes in FBI score. Though the FBI scores are healthy and sensitive species dominate the sample, the low diversity and disproportion of families is not ideal. Variability in family representation may be caused by environmental factors including water levels, habitat availability, collection location, or other sources of disturbance in the area.

Family List – Locke Lake Below					
Family Name	Tolerance Value	# Individuals 2023	# Individuals 2022	# Individuals 2021	# Individuals 2020
Baetidae (mayfly)	4	17	36	65	10
Blephariceridae	0	1			
Chironomidae (truefly)	6	60	92	13	12
Decapoda (crustacean)	6			4	
Elmidae (beetle)	4	2	1	6	1
Empididae (truefly)	6	4	1	1	1
Gammaridae (crustacean)	4				
Gastropoda (snails)	7		1		
Gerridae (true bug)	N/A			2	
Hirundinea (leech)	10				
Hyalellidae (crustacean)	8	1			
Hydropsychidae (caddisfly)	4	35	61	108	100
Leptophlebiidae (mayfly)	2		1		
Nematoda (round worm)	5		6		
Oligochaeta (aquatic worm)	8	37			
Pelecypoda (clams)	7	1	1		
Philopotamidae (caddisfly)	3	3	10	2	12
Polycentropodidae (caddisfly)	6		1		
Scirtidae (beetle)	7	1			1
Simuliidae (truefly)	6	32	50	2	6
Tabanidae (truefly)	6			1	

Table 41: Locke Lake Below family list

4.9 Locke Lake Park – monitored by Team #3, 9/17/2023

Number of individuals:

A large sample offers more confidence for a more reliable data set. SHEP protocol requires a minimum of 100 individual invertebrates to be picked and identified per sample.

• 199 invertebrates were identified in this sample. This is an adequate sample size.

Dominant Family:

• Baetidae (small minnow mayfly)

Baetidae have a tolerance value of 4 on a scale of 0-10. (The lower the tolerance value, the lower their tolerance to pollution). Small minnow mayflies are small, and may be very abundant in ideal conditions. They are good swimmers, and are found in streams with moderate currents or slack water. Some species are common in polluted streams. (Guide to Aquatic Invertebrates of the Upper Midwest, R.W. Bouchard, Jr.)

Percent Dominance:

It is assumed that families are more evenly distributed among the sample if the dominant family makes up a lower percentage of the sample.

Year	Dominant Family	% Dominance	Dominant Family (2 nd)	% Dominance
2023	Baetidae	45	Chironomidae	22
2022	Hydropsychidae	37	Baetidae	17
2021	Chironomidae	44	Baetidae	13
2020	Baetidae	47	Hydropsychidae	41
2019	Simuliidae	57	Chironomidae	15
2018	Chironomidae	45	Simuliidae	32
2017	Simuliidae	66	Oligochaeta	10
2016	Simuliidae	71	Baetidae	15
2015	Hydropsychidae	63	Chironomidae	23
2014	Hydropsychidae	48	Chironomidae	27
2013	Nematoda	56	Hydropsychidae, Oligochaeta	10 (each)
2012	Chironomidae	32	Hydropsychidae	20

Table 42: Locke Lake Park data

SHEP 2023 Monitoring Report Friends of the Mississippi River

Number of Families (identified in a sample)

The higher the diversity, the better.

Year	# Families
2023	17
2022	12
2021	17
2020	8
2019	11
2018	15
2017	7
2016	6
2015	10
2014	11
2013	11
2012	14

Table 43: Locke Lake Park families

Number of EPT Families (pollution sensitive):

EPT (*Ephemeroptera-Plecoptera-Tricoptera or Mayfly-Stonefly-Caddisfly*) are three classes of invertebrates with low tolerance to pollution. The more of these families in a sample, the better. More than 10-12 families is good.

Year	# EPT Families	% make-up of EPT Families	EPT Families			
2023	5	10	Baetidae, Heptageniidae, Hydropsychidae, Hydroptilidae, Leptoceridae			
2022	3	55	Baetidae, Hydrosychidae, Philopotamidae			
2021	6	29	Baetidae, Hydrosychidae, Philopotomidae, Polycentropodidae, Brachycentridae, Capniidae			
2020	2	87	Baetidae, Hydropsychidae			
2019	3	14	Baetidae, Caenidae, Hydropsychidae			
2018	2	14	Baetidae, Hydropsychidae			
2017	1	10	Baetidae			
2016	2	23	Baetidae, Hydropsychidae			
2015	2	70	Baetidae, Hydropsychidae			
2014	2	48	Baetidae, Hydropsychidae			
2013	1	10	Hydropsychidae			
2012	3	28	Baetidae, Hydropsychidae, Philopotamidae			

Table 44: Locke Lake Park EPT families

This program identifies macroinvertebrates to the family level. Each family is assigned a tolerance value rating from 0-10. The lower the number, the more sensitive to pollution. The FBI score is the average pollution tolerance of all of the macroinvertebrates identified in a sample.

Year	FBI Score	Score Description		
2023	4.8	Good – some organic pollution probable		
2022	4.8	Good – some organic pollution probable		
2021	5.2	Fair – fairly substantial pollution likely		
2020	4.2	Very Good – possible slight organic pollution		
2019	5.9	Fairly Poor – substantial pollution likely		
2018	5.7	Fair – fairly substantial pollution likely		
2017	5.7	Fair – fairly substantial pollution likely		
2016	5.5	Fair – fairly substantial pollution likely		
2015	4.6	Good – some organic pollution probable		
2014	4.9	Good – some organic pollution probable		
2013	5.5	Fairly Poor – substantial pollution likely		
2012	4.7	Good – some organic pollution probable		

Table 45: Locke Lake Park FBI score

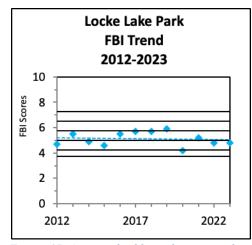


Figure 17. A stream health trend was created using scores calculated for family biotic index (FBI). Contrary to common sense, a descending trendline indicates improvement in the stream health since organisms with sensitivity to water pollution score lower on the family biotic index.

Summary:

Locke Lake Park has been sampled 12 consecutive years since 2012. In 2023, the FBI score indicated "Good" health. The FBI health trend is stable. The dominant family and the number of families are variable each year; however, sensitive species including Baetidae, and Hydropsychidae are consistent. Chironomidae, Elmidae, and Simuliidae are also regularly collection. As typical to many sites, the family representations are disproportionate. Aeshnidae, Leptoceridae, and Muscidae were collected for the first time at this site in 2023. Variability in family representation may be caused by environmental factors including water levels, habitat availability, collection location, or other sources of disturbance in the area.

Family List – Locke Lake Park					
Family Name	Tolerance Value	# Individuals 2023	# Individuals 2022	# Individuals 2021	# Individuals 2020
Aeshnidae (dragonfly)	3	1			
Asellidae (crustacean)	8	1			
Baetidae (mayfly)	4	90	33	21	86
Blephariceridae (true fly)	0			1	
Brachycentridae (caddisfly)	1			1	
Caenidae (mayfly)	7				
Calopterygidae	5	1		1	
Capniidae (stonefly)	1			1	
Chironomidae (true fly)	6	44	30	70	17
Decapoda (crayfish)	6			7	
Dryopidae (beetle)	5			1	
Elmidae (beetle)	4	20	27	17	1
Empididae (true fly)	6			3	
Gammaridae (crustacean)	4	3			
Gastropoda (snail)	7	1			
Gerridae (true bug)	na			1	
Heptageniidae (mayfly)	4	3			
Hirundinea (leech)	10		1		
Hyalellidae (Talitridae)	8				
Hydracarina (aquatic spider)	4		1	1	
Hydropsychidae (caddisfly)	4	10	71	21	75
Hydroptilidae (caddisfly)	4	3			
Leptoceridae (caddisfly)	4	3			
Muscidae (truefly)	6	1			
Nematoda (round worm)	5		5		1
Oligochaeta (aquatic worm)	8	5	17	4	
Pelecypoda (clam)	7	10	3	7	1
Philopotomidae (caddisfly)	3		2	1	
Polycentropodidae (caddisfly)	1			1	
Scirtidae (beetle)	7				
Simuliidae (true fly)	6		1		2
Tipuliidae (true fly)	3	1			
Turbellaria (flat worm)	4				2
Veliidae (truebug)	6	2	2		

Table 46: Locke Lake Park family list

5.0 SUMMARY OF RESULTS

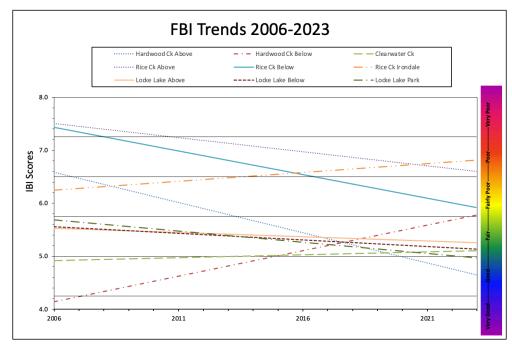


Figure 18: FBI trends for monitoring sites from 2006 to 2023. Notes: The trend graph is inverted. Increasing trends appear to be decreasing on graph. Lower FBI numbers indicate healthier streams. Rice Creek Irondale and Locke Lake Park sites not included because monitoring began at later date than other sites.

5.1 Improving

Hardwood Creek Above and Rice Creek Below each are showing overall improving health trends through the years that SHEP has sampled at those sites; however, Hardwood Creek Above could not be sampled in 2023 due to dry creek beds. Rice Creek Above is also showing overall improving health trends; however, the data is variable year after year (Figure 18).

5.2 Stable

Clearwater Creek, Rice Creek Irondale, Locke Lake Above, Locke Lake Below and Locke Lake Park each are showing overall stable health trends through the years that SHEP has sampled at those sites (Figure 18).

5.3 Worsening

Overall, Hardwood Creek Below is showing declining health trends; however, only in recent years (Figure 18). This may be a result of drought and low water flow (especially in 2021 and 2022) impacting the habitat and the organisms present during times of low water and low water flow. It should also be noted that Harwood Creek Below could not be sampled in 2023 due to dry creek beds.

5.4 Status in 2023

Figure 19 shows each sampling location's FBI score and stream health rating for 2023. Variability may be caused by environmental factors including water levels, habitat availability or other sources of disturbance in the area.

While SHEP volunteers collect data on the physical habitat, SHEP limits their analysis of physical stream data, as it is can be subjective in description and placement of data collection – not only from team to team but from year to year depending on who is collecting the data. Thus, SHEP only provides macroinvertebrate data to provide a picture of stream health and changes throughout time.

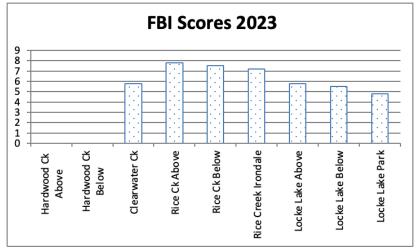


Figure 19: Stream health rating for SHEP sampling sites in 2023

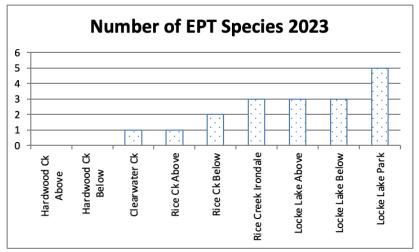


Figure 20: Number of EPT species for SHEP sampling sites in 2023

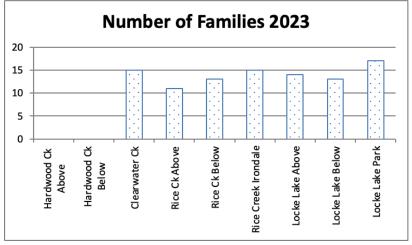


Figure 21: Number of families present for SHEP sampling sites in 2023